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CRADA Title: Graphene Oxide Fuel Cell Materials Development and Testing
Joint Work Statement Funding Table showing DOE commitment:
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Estimated Costs a/k/a Government In-Kind

Year 1 $100,000.00
TOTALS $100,000.00
Abstract of CRADA Work:

The objective of the work performed under this CRADA is to assist Garmor to quantify technical
and cost payoffs of achieving a very high through-plane electrical conductivity in a composite
BPP for Proton Exchange Membrane Fuel Cells (PEMFCs).

Summary of Research Results:

Task 1: Ex-situ testing of Garmor BPP materials. This may include leaching and/or
corrosion studies, conductivity studies, and measurements of interfacial resistance with
beginning of life and long term durability implications

Leaching/corrosion tests:

The purpose was to determine the leaching of the resin used to hold the graphitic powders
into the bipolar plates (BBP). Samples consisted of graphite and graphene oxide. Company sent
1’ diameter disks that were mounted to a glass slide with a small amount of silicone for
mechanical support. Leaching tests were performed exposing just one side of the BPPs at a time
in 1 M H2SO04, aerated solution with zero-air at 80°C. Because of evaporation, fresh electrolyte
was replenish every hour during 6 hr of leaching test. Fig. 1 shows the corrosion test setup.

After corrosion, the samples were removed and the electrolyte was analyzed to determine
expected elements leached out of resin using an Inductively Coupled Plasma Mass Spectroscopy
(ICP-MS) for elemental concentration. Optically, samples did not show observable damage at the
surface indicating that corrosion was not significant. Fig. 2 shows the leaching results from the
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two types of samples (10-533 and 10-535) that does not appear to be discernibly different from
each other, but there are differences between the samples and the control. The control runs
consisted of leach testing with everything the same except no BPP sample in place. It looks like
Ca, Fe, and Zn leach from the BPP samples in appreciable quantities and P, Cr, Ni, and Mn leach
in detectable quantities. The measured Si, K, and Cu quantities do not appear to be significantly
different from the control.

Fig. 1. Leaching/corrosion setup
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Fig. 2. Composition of elements dissolved/leached-out of BPP samples. Results from ICP-MS.
Interfacial contact resistance (ICR) tests:

Shimpo Force Gauges was employed to control pressure over the samples while an electrical set-
up was used to measure the electrical resistance as a function of load. Fig. 3 shows the
equipment and electrical set up used. The results shown in Fig. 4 indicate that graphite samples
have less contact resistance than graphene oxide samples.
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Fig. 3. Squematic diagram of electrical resistance measurement as a function of load applied by
the Shimpo force gauge (left).
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Fig. 4. Interfacial contact resistance (ICR) tests as a function of compaction force for graphite and
graphene oxide samples

Task 2: In-situ testing of Garmor BPP materials in single cell and/or stack configurations
and comparison to other materials

Graphite BPP were constructed and sent to NREL for in-situ testing in a single cell
configuration. NREL conducted in-situ tests on new flow-field materials. Graphite BPP were
compared to commercial Poco-graphite materials. Flow-fields were fabricated using a molding
process. Flow-fields were significantly thinner than NREL standard single cell lab flow-fields.
Metric were polarization and other in-situ experiments using 3M fuel cell materials.

Hardware configuration adjustments were necessary because received graphite plates
were significantly thinner than reference Poco Graphite material (0.5 thick) (see Fig. 5).
Alignment through tubes into flow-field were not feasible. Sealing area around inlet and outlet
were reasonably flat. Regular alignment pins were extended through thin graphite plate and
current collector plate was placed into the end plate. Seal strategy was still using viton o-ring
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Fig. 5. Commercial Poco-graphite BPP (left) and graphene/graphite blends BPP (right) top view (a)
and angular view (b) showing differences in thicknesses between samples.
A compression test using Fuji paper was used. For this test the assembly only used
pressure paper in hardware. Eight bolts and four pairs of Belleville washers were employed.
40 inch*lbs was applied in three steps. Results indicate that pressure was applied on all areas of
the cell. Terella signature stamped in sealing area may impact sealing of cell. Otherwise no
compression gaps or voids indicated (see Fig. 6).

Fig. 6. (a) Compression test assembly. (b) Fuji pressure paper after test.
The compression at O-Ring showed no depressions at o-ring locations, sealing material seems
appropriate (see Fig. 7)
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Fig. 7. Compression at O-Ring test.

The hardware sealing/leak test was performed with an assembly of two SGL BC29 units.
The PTFE gasket thickness was calculated for 20% GDL compression assuming 6% gasket
compression. Eight bolts and four pairs of Belleville washers were used. 40 inch*lbs was applied
in three steps. Initial pressure was at 30 psi, loosing 3 psi over 10 min, which is an acceptable
pressure loss indicating that flow field was ready for testing.

DOE protocol used with two kinds of humidification for polarization curve experiments
is shown in Fig. 8. The electrochemical procedure followed for polarization curve is shown in
Fig. 9.

Step # Step Name Descriptor Details Comments
1 Cell Assembly Assemble MEA in 50cm2 hardware 3M MEAs, PTFE gaskets, S6L29 BC GDL, 50cm*2 cell, quad/quad flow-field, 40 in*lbs/bolt
2 Leak Test Perform NREL standard hardware leak test 30psig. delta p of ~2psi over 10 min acceptable
3 Hook up connect cell to test station, leak test at ambient pressure flow S00/500 scem N2/N2, switch to H2/N2, perform test with manual H2 detector

Determines Area Specific Resistance and Hydrogen

0
H Crossover Limiting Current

4 electrical short/H2Xover Test integrity of the cell for holes and electrical shorts

room temp, ambient pressure, 200/200 scem H2/N2, 0.1 mV/sec scanrate, OCV to 0.5V, 100% RH at 25C

1. Set 800/1800 scem H2/N2, 12/12 psi ambient Denver pressure
2. Increase RH 0 70/70C while to 70C
5 Warm up Bring cell to operating temperature 3. Set cell to 0.65V and activate load
4. Switch gas to H2/Air
5. Wait until current does not change any more

a) Perform PDS (Alternate Polarization Scan) (duration 4min 10sec)
1.5etVto 0.9V and held for 10sec
2. Step V down 0.05V and hold for 10 sec

3. Repeat step 2. until 0.3V is reached.

4. Step V up 0.05V and hold for 10 sec

5. Repeat step 4. until 0.9V is reached

b Perform PSS (Static High Current Hold) (duration 5 min)
1. Set V to 0.4V and hold for 5 min
) Repeat 20x cycles of d) (PDS) and ) (PSS) (duration ~3 hours)
d] Switch to thermal cycle

6 Conditioning Perform 3M standard procedure 1. Switch load off + Manual switching, we need to be there in person
+ Needle valve to regulate water flow
2. Switch gas flows to 0/0 scem H2/Air + 2-way valves for on/of
3. Flow DI/DI water through cell
) Perform thermal cycle
4. Wait for cell to reach room temp but no longer than 30 min
) Switch to PDS
1. Switch DI/DI water off
2. Run Warmup (see above}
B Run PDS (step a) and PSS (step b]} for one hour (=7 cycles)
h) repeat d}-g)
7 Cool Down Prepare cell for integrity test
8 electrical short/H2Xover  Test integrity of the cell for holes and electrical shorts room temp, ambient pressure, 200/200 sccm H2/N2, 0.1 mV/sec scanrate, DCV to 0.5V, 100% RH at 25C
9 store overnight
10 Warm up H2/N2 => reduce all oxides => V<0.1V
Load Warm up at 40/40% RH 20 min Equilibrium step 0.6 A/cm2, 1.5/1.8 stoich, H2/air, 80C, 150/150 kPa, 59/59 C dew points i
OCV measurement at 40/40% RH 1 min, OCV point, 0 A/cm2, EQLF for 0.2 A/cm2 with 1.5/1.8 stoich, H2/air, 80C, 150/150 kPa, 59/59 C dew points NREL stations are
i I rom Pt- <01, 3 h, H2/N2, 80C, 3 1 :
Pt reduction step clean Pt surface from Pt-Ox, H2 take over at 40/40% RH  Until V < 0.1V, 0 A/cm2, EQLF for 0.2 A/cm2 with 1.5/1.8 stoich, H2/N2, 80C, 150/150 kPa, 59/59 C dew points Callbrated to run
3 min steps, start at 80C, 59/59 C dew points, 0.2 A/em2, stoich 1.5/1.8, H2/Air, 150/150 kPa . .
4 Wicurws, Low it B 1 208 DOE Brotocol WR E1S 8 00N it 0.2/0.40.6/0.8/1/1.2/1.4/1.6/1.8/2/1.8/1.6/1.4/1.2/1/0.8/0.6/0.4/0.2/0.1/0.05/0.02/0.05/0.1/0.2 stoichmetrics of
P ik B 85 00/ 00K AN wait until temps are reached, 20 min minimum Equilibrium step 0.6 A/cm2, 1.5/1.8 stoich, H2/air, 80C, 150/150 1. 5/2
kPa, 59/59 C dew points
12 Pt reduction step clean Pt surface from Pt-Ox, H2 take over at 100/100% RH  Until V < 0.1V, 0 A/em2, EQLF for 0.2 A/cm2 with 1.5/1.8 stoich, H2/N2, 80C, 150/150 kPa, 59/59 C dew points
13 VI curve, High RH Run VI curve DOE protocol with EIS at 100/100% RH 3 min steps, start at 80C, 80/80 C dew points, 0.2 A/cm2, stoich 1.5/1.8, H2/Air, 150/150 kPa

0.2/0.40.6/0.8/1/1.2/1.4/1.6/1.8/2/1.8/1.6/1.4/1.2/1/0.8/0.6/0.4/0.2/0.1/0.05/0.02/0.05/0.1/0.2

Fig. 8. DOE protocol used with two humidifications for polarization curve experiments.
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Fig. 9. Electrochemical procedure followed for polarization curve

Experimental results shown in Figs. 10 to 17 determined that the current density
increased at the beginning and became stable after about 100 min and the HFR was stable during
the first 3hr conditioning step (Fig.10). In the voltage control conditioning step (Fig. 11), the
current density was highly reproduceable. Since the cell was stable after the 1st step, a shorter
conditioning time was suggested.

Conditioning and Life Test; Station TD3; Cell Size 50 cm’

“,_M: [—i —v —w] ' ' ' ' ' o
o
R

Time [min]

Fig. 10. Conditioning steps for in-situ testing.
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Conditioning and Life Test; Station TD3; Cell Size 50 cm’
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Fig. 11. Conditioning for voltage control for in-situ testing.

Results for the thin graphite 1 flow field (1.16mm thick) are shown in Fig. 12. Results for
the thin graphite 1 plate compared for relative humidity (RH) in Fig. 13 shows that in the low
RH condition, the HFR dropped first, and then slightly increased due to the anode dryout. In the
high RH condition, the HFR was relatively stable. The thin graphite cell in the low RH
outperformed the one in the high RH at low current density. The up polarization curve in the
high RH was wiggled at around 1 A/cmz, and this was checked with a repetition thin graphite 2
cell.

The thick graphite flow field (Poco-graphite, 12.7mm) and the thick graphite plate
compared with RH are shown in Figs. 14 and 15, respectively. According to the polarization
curve, the cell in the high RH condition outperformed that in the low RH. In the low RH
condition, the HFR dropped first, and then slightly increased due to the anode dryout. In the high
RH condition, the HFR was stable.
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Fig. 12. Results for the thin Graphite 1 Flow Field (1.16mm thick).
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Fig. 13. Results for the thin Graphite 1 Plate: Comparison of RH.
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Fig. 14. Results for thick Graphite Flow Field (Poco-Graphite, 12.7mm).
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Fig. 15. Results for thick Graphite Plate: Comparison of RH

The BPP hardware comparison for low and high RH are shown in Figs. 16 and 17. In the
low RH condition, the thick graphite cell had a higher HFR than the thin graphite 1 cell. The
overall performance of the thick graphite cell was a little bit better. In the high RH condition
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(Fig. 17), the thick graphite cell had a higher HFR than the thin graphite 1 cell. The overall
performance of the thick graphite cell was much better than the thin one. The high RH condition
demonstrated the importance of the flow field thickness.
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Fig. 16. BPP hardware comparisons for low RH.
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Fig. 17. BPP hardware comparisons for high RH.

After these results we modified the testing protocols. We used the same MEA and a new
thin graphite flow field (thin graphite 2) for the test with a thickness of about 1.16mm. We
modified the polarization curve protocols for thin graphite 2. The i-t curve of the current control
process is shown in Fig. 18. All the other test condition were the same as previous protocol.

Experimental results of thin graphite 2 flow field (1.16mm thick) and the thin graphite 2
plate compared with RH are shown in Figs. 19 and 20, respectively. In the low RH condition, the
HFR dropped first, and then slightly increased due to the anode dryout. In the high RH condition,
the HFR was quite stable. The thin graphite 2 in the high RH outperformed the one in the low
RH. It is the same trend with thick graphite flow field.
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Fig. 19. Experimental results of thin graphite 2 flow field (1.16mm thick)
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Fig. 20. Results for thin Graphite 2 Plate: Comparison of RH.

The BPP hardware comparison for low and high RH are shown in Figs. 21 and 22. In the
low RH condition, the thick graphite cell had a higher HFR than the thin graphite 1 cell. The
overall performance of the thick graphite cell was a little bit better. In the low RH condition (Fig.
21), the thick graphite cell had a little bit better overall performance than the thin graphite 2 cell.
The thin graphite 2 and thick graphite had a similar HFR. In the high RH condition (Fig.22), the
performance of thin graphite 2 cell was better at high current densities.

The BPP of thin graphite 1 and thin graphite 2 cell comparisons for low RH and high RH
are shown in Figs. 23 and 24, respectively. In the low RH condition (Fig. 23), the performance of
thin graphite 2 cell was comparable to that of thin graphite 1. In the high RH condition (Fig. 24),

the performance of thin graphite 2 cell was much better than thin graphite 1.
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Fig. 21. BPP hardware comparisons for thin graphite 2 cell for low RH.
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Fig. 22. BPP hardware comparisons for thin graphite 2 cell for high RH.
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Fig. 23. BPP of thin graphite 1 and thin graphite 2 cell comparisons for low RH.
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Fig. 24. BPP of thin graphite 1 and thin graphite 2 cell comparisons for high RH.
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Task 3: Technical input and guidance in the area of bipolar plates and other cell materials.

Experimental results shown in Figs. 10 to 24 and their analyses discussed in previous
paragraphs are compliant with this task regarding guidance for BBP and other cell materials such
as the commercial Poco-graphite.

Incomplete testing of samples because samples were not provided

Graphene and Graphene/Graphite blends samples for BPP in-situ evaluations were not
tested because Garmor lost connection with the company that was fabricating the samples. The
funds were moved to other Hydrogen projects being performed at NREL (email from Keith
Wipke, the Laboratory Program Manager of the Fuel Cell and Hydrogen Technologies Program
at NREL dated February 26, 2019 informs the moved of remaining funds).

hi : S

None

None

Judith Vidal | judith.vidal@nrel.gov

Name and Email Address of POC at Company:
Sean Christiansen | schristiansen@garmortech.com
DOE Program Office:

Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office
(FCTO)
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